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Sequential Estimation Methods

® Models that cannot be estimated using a single-step approach.

Examples include endogeneity issues, missing data, unobserved regressors, or when

many DGPs are involved.

® Asymptotic properties of the estimator at the final stage.

Estimator may not be normally distributed.
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Sequential Estimation Methods

® Models that cannot be estimated using a single-step approach.
Examples include endogeneity issues, missing data, unobserved regressors, or when
many DGPs are involved.

® Asymptotic properties of the estimator at the final stage.
Estimator may not be normally distributed.

® Solutions

@® Bootstrap approach.
Time-consuming and sometimes infeasible for complex models.

® Orthogonal or ”immunized” equations at the final stage that are locally insensitive

to small mistakes in the prior estimates (Chernozhukov, Hansen, and Spindler
2015, Annu. Rev.).
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This Paper

® Two-stage estimation strategy where the second stage leads to an M-estimator

(conditional M-estimator).
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=1
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practitioner should be able to simulate proposals from the distribution of ,C:]n

Houndetoungan and Maoude ESSEC — Apr 13, 2023 3/13



This Paper

® Two-stage estimation strategy where the second stage leads to an M-estimator

(conditional M-estimator).

Objective function at the second stage
R 1< R
Qn(&)’mxmﬁn) = ﬁzqn,i(eaﬁn)~ (1)
i=1

® The estimator B, is general but consistent (e.g., posterior mean) and the

practitioner should be able to simulate proposals from the distribution of ,C:ln

A straightforward approach to estimate the distribution of \/n(6, — 8o).

- Take into account the uncertainty at the first stage (relevant for small samples).

- Computationally more attractive than the Bootstrap method.
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Examples

® Models with latent variables

E(y|u7x) = f(ao +01u+ XIBQ)v (2)

Popular in IO literature, where u is estimated using nonparametric methods (see

Bajari, Hong, and Nekipelov 2013, Book).
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Related to the Literature

® Case of M-estimators at both steps (e.g., Cameron and Trivedi 2005, Book)
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Related to the Literature

® Case of M-estimators at both steps (e.g., Cameron and Trivedi 2005, Book)

® Orthogonality or ”immunity” condition (Chernozhukov, Hansen, and Spindler
2015, Annu. Rev.).
MVT at the second stage

Vi(0, = 00) = An(1/v/n)Vo 31, 4n.i(0, Br) ®3)

Classical CLT cannot be applied to (1/v/n)Ve > i | gn,i(00, Bn).
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® Orthogonality or ”immunity” condition (Chernozhukov, Hansen, and Spindler
2015, Annu. Rev.).
MVT at the second stage

Vi(0, = 00) = An(1/v/n)Vo 31, 4n.i(0, Br) ®3)

Classical CLT cannot be applied to (1/v/n)Ve > i | gn,i(00, Bn).

Implies that (1/v/7)Ve 327, gn,i(80,Bn) and (1/v/n)Ve 327, ¢n.i(80, Bo) have
the same distribution asymptotically.

The CLT can be applied.
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Variance Estimation

® MVT at the second stage

\/’E(én — 90) = An (1/\/ﬁ)v9 ZQn,i(607ﬁn)

Cn

Classical CLT cannot be applied to C.
® Assumptions: Cy, = O,(1) and plim Var (C,) = plim 3, exists.
® We show that

3, =E {(1/n) ZVar (Veqmz‘(eoyﬁn)mn) } +

=1

(1/n) Var {i E (Veqn,i(em ,én)mn) }

i=1
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Variance Estimation

® Because the second stage uses an M-estimator approach and @, (9, Y, Xn, ,én)
is known, we can compute (1/n) Y.}, Var (Veqn,i(eo,,én)\,én) =H,(00,8,)
and (1/y/n)> " | E (VGQn,i(OO,,én)|,én) =H.(00,5n).
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Variance Estimation

® Because the second stage uses an M-estimator approach and @, (9, Y, Xn, ,@n)
is known, we can compute (1/n)> " | Var (Veqn,i(eo,,én)\,én) =H,(00,3,)
and (1/v/7) X1y E (Voan.i(00, 8)] B ) = He(00, Bu).

® 3, can be consistently estimated by

1 B

B
B, = % > HL(00,87) + 5 D (He(8,,8) — )(HL(6,,8”) - 0,
b=1 b=1

where Q@ = (1/B) 2, H,.(0,,3") and 8, ..., B are draws from the
distribution of ﬁn

® Var (\/ﬁ(én - 90)) can be estimated by A, 3, A’,.
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Confidence Intervals using the Variance

® A confidence interval for 8¢ can be obtained regardless of the asymptotic
distribution of v/n(8,, — 8o).
® E.g., assume that 0 is a scalar. We are looking for a,, such that

P {90 € (0, + an)} > 1 — «, which implies P (|én — 09| > an) <a.
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Confidence Intervals using the Variance

A confidence interval for 8¢ can be obtained regardless of the asymptotic
distribution of v/n(8,, — 8o).
® E.g., assume that 0 is a scalar. We are looking for a,, such that

P {90 € (én + an)} > 1 — «, which implies P (|én — 0o| > an) <a.

o (ﬁ(én - eo))
(na)1/2 :
A weaker test. In most cases, a, is higher than for the case of normal

o (Va8 - 8))

distribution where a,, = — i (1-%).

Chebyshev’s inequality: a, =

For o = 5%, Hy is rejected if 0, /0 (v/n(0,) > 4.47 against 1.96 for the normal

distribution.
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Distribution Approximation

B,=3(exp(u) - 1)/ (/(exp(u) + 1)), u=N(0, 4) B,20.2u/4, u~t(5)
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Figure: Distriution of the plug-in estimator
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Distribution Approximation

Br=3(exp(u) - 1)/ (A(exp(u) +1), u=N(0, 4) B,=0.2u/F, u~t(5)
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Figure: Distriution of the plug-in estimator and distribution approximation
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density

Distribution Approximation

® Poisson model: \; = exp(6o,1 + 0o,2pi), where p; is not observed.

{7 (8,1 - 801) with n = 2,000

J7(8,2~8o1) with n = 5,000

Y77 (8,1~ 801) with n = 10,000

/= Normal1

- = Normal 2

Approximation

Houndetoun,
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Conclusion

® Asymptotic analysis of conditional M-estimators.

® First stage is general and includes non-Gaussian distributions (e.g., Bayesian

estimators).

® Estimation of the variance at the second stage taking into account the

uncertainty of the first stage.
® The asymptotic normality is not necessarily guaranteed at the second stage.

® Weak statistical tests at the second stage and distribution approximation.
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Conclusion

® Asymptotic analysis of conditional M-estimators.

® First stage is general and includes non-Gaussian distributions (e.g., Bayesian

estimators).

® Estimation of the variance at the second stage taking into account the

uncertainty of the first stage.
® The asymptotic normality is not necessarily guaranteed at the second stage.

® Weak statistical tests at the second stage and distribution approximation.

® To do

@ Application on real data.
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THANK YOU



