Multifractal Discrete Stochastic Volatility

Kassimou Abdoul Haki Maoude¹ Maciej Augustyniak¹

Arnaud Dufays²

¹Département de mathématiques et de statistique, Université de Montréal ²Département d'Économique, Université Laval

June 9, 2020

Introduction

- Modelling financial data is essentially done through the study of the log-return.
- Regime switching processes become a powerful tool to model, forecast and interpret financial data.
- These models try to mimic some specifics characteristics (called *stylized facts*) presented by log-returns.
- The MSM (Calvet and Fisher (2004)) has proved to be a strong competitor of GARCH class of models for modelling volatility of returns.

Motivation

- MSM model the volatility of log-return by a high-dimensional Markov chain obtained by the product of lower-dimensional Markov chains (with 2 states).
- MSM is parsimonious.
- Nice interpretation of MSM : Financial volatility is impacted by the arrival of news in the market whose impact persist for varying periods of time
- MSM allow to capture three types of features view in the literature as distinct : low-frequency variations, intermediate-frequency dynamics and high-frequency switches.

Motivation

- MSM does not help to reproduce some stylized facts such as leverage effect.
- MSM is based on the product of 2-states Markov chains.
- Several recent studies (Hansen and Huang (2016); Liu and Maheu (2018), etc.) showed that instead of modeling uniquely log-returns, adding realized measures helps to improve the information about the current level of volatility.

What do we do?

We propose a new process (Multifractal Discrete Stochastic Volatility, MDSV) that :

- generalize MSM and other related models,
- slow the decay of the auto-correlation function at finite lags (a stylized fact),
- take into account leverage effect,
- jointly model financial log-returns and realized volatilities,
- allow to capture low-frequency variations, intermediate-frequency dynamics and high-frequency switches such as MSM ,
- can be interpreted as a multi-component stochastic volatility model .

- - E - - E

Outlines

1. Introduction

2. Model

3. Results

MDSV : Model presentation

• Model :

$$\begin{cases} r_t = \sqrt{V_t} \epsilon_t, \\ \log RV_t = \xi + \varphi \log(V_t) + \delta_1 \epsilon_t + \delta_2(\epsilon_t^2 - 1) + \gamma \varepsilon_t, \end{cases}$$

where $\xi \in \mathbb{R}$, $\varphi \in \mathbb{R}$, $\delta_1 \in \mathbb{R}$, $\delta_2 \in \mathbb{R}$, and $\gamma \in (0, \infty)$ are parameters, and ϵ_t and ε_t are mutually and serially independent innovation processes with mean 0 and variance 1.

- Volatility process V_t is express as the product of two components :
 - A persistent component M_t ,
 - A component L_t capturing leverage effect.

$$V_t = M_t L_t \, .$$

Introduction Model Results

MDSV : Model presentation

• Persistent component :

The component $\{M_t\}$, MDSV(N, K), is constructed as the product of N independent Markov chains of dimension K :

$$M_t = \frac{\sigma^2}{m} \prod_{i=1}^N M_t^{(i)} \,,$$

with $M_t^{(i)}$ Markov chains with state space $\nu^{(i)}$, stationary distribution $\pi^{(i)}$ and the transition matrix $P^{(i)}$ defined by

$$P^{(i)} = \phi_i \mathbf{I}_{\mathbf{K}} + (1 - \phi_i) \mathbf{1}_{\mathbf{K}} \pi^{(i)},$$

where $\phi_i \in (0,1)$, and $\phi_i = a^{b^{i-1}}$, $\forall i = 1, 2, \dots, N$.

MDSV : Model presentation

Parsimony is reach by setting some restrictions. After all, the component $\{M_t\}$ depends on five parameters (independent of N):

$$\sigma^2\in (0,\infty)\,,\quad
u_0\in (0,1)\,,\quad a\in (0,1)\,,\quad b\in (1,\infty)\,,\quad \omega\in (0,1)\,.$$

Remark: Although the state space is of dimension K^N , it contains N(K-1)+1 distinct values.

Leverage component :

$$L_t = \prod_{i=1}^{N_L} L_t^{(i)} \text{ avec } L_t^{(i)} = 1 + l_i \frac{|r_{t-i}|}{\sqrt{L_{t-i}}} \mathbf{1}_{\{r_{t-i} < 0\}},$$

where

$$I_i = heta_I^{i-1} I_1 \ \, ext{and} \ \, I_1 > 0 \,, \, heta_I \in [0,1] \,.$$

Some remarks

Theorem (Properties of MDSV) :

• For $k \ge 1$, we have $\mathbb{C}ov[M_{t+k}, M_t] = \sigma^4 \left(\prod_{i=1}^{N} \left(1 + (A^{K-1} - 1)\phi_i^k\right) - 1\right)$, where A is a constant greater than 1.

•
$$\mathbf{P}^k - \mathbf{\Pi} = \mathcal{O}\left(k^{\mathbf{K}-2}a^k\right)$$
.

• The distribution of the time that the chain $\{M_t\}$ spends in one of the (non-extremal) N(K - 1) + 1 distinct values of the state space is not geometric (semi-Makov property).

Remark 1 :

- MDSV generalize MSM and like models.
- MDSV can be interpreted as a multi-component stochastic volatility model.

Introduction Model Results

Performance measurement tools

• Fitting (in-sample) :

AIC =
$$\mathcal{L} - k$$
,
BIC = $\mathcal{L} - \frac{k}{2} \log(n)$,

• Forecasting (out-of-sample) :

RMSFE(h) =
$$\sqrt{\frac{1}{T-h+1}\sum_{t=0}^{T-h} \left[\left(\frac{1}{h} \sum_{i=1}^{h} \hat{x}_{t+i} - \frac{1}{h} \sum_{i=1}^{h} x_{t+i} \right)^2 \right]},$$

MAFE(h) = $\frac{1}{T-h+1} \sum_{t=0}^{T-h} \left| \frac{1}{h} \sum_{i=1}^{h} \hat{x}_{t+i} - \frac{1}{h} \sum_{i=1}^{h} x_{t+i} \right|,$

Data

- 4 daily financial time series available on the Oxford-Man Institute of Quantitative Finance's web site :
 - S&P 500 (Standard & Poor's 500)
 - NASDAQ 100 (National Association of Securities Dealers Automated Quotation 100)
 - FTSE 100 (Financial Times Stock Exchange 100)
 - NIKKEI 225 (Nihon Keizai Shinbun 225)
- Period : from January 1st, 2000 to December, 31st, 2019.

Table: Comparison of fits

		Benchmarks		MDSV								
	Real	MS-RV K = 2	MS-RV K = 4	(N, K) (3, 10)	(N, K)	(N, K)						
Np	10	7	19	12	12	12						
•	S&P 500 (<i>n</i> = 5016)											
\mathcal{L}	-6786.1	-8324.1	-7402.2`	-6673.8	-6687.9	-6701.0						
AIC	-6796.1	-8331.1	-7421.2	-6685.8	-6699.9	-6713.0						
BIC	-6828.7	-8354.0	-7483.2	-6724.9	-6739.0	-6752.2						
NASDAQ 100 $(n = 5012)$												
\mathcal{L}	-8661.3	-10624.0	-9802.2	`-8546.9´	-8568.3	-8590.3						
AIC	-8671.3	-10631.0	-9821.2	-8558.9	-8580.3	-8602.3						
BIC	-8703.9	-10653.8	-9883.2	-8598.0	-8619.4	-8641.5						
FTSE 100 $(n = 5042)$												
\mathcal{L}	-7809.9	-8918.2	-8302.4`	-7761.4	-7804.8	-7789.4						
AIC	-7819.9	-8925.2	-8321.4	-7773.4	-7816.8	-7801.4						
BIC	-7852.5	-8948.0	-8383.4	-7812.6	-7855.9	-7840.6						
NIKKEI 225 $(n = 4865)$												
\mathcal{L}	-9004.3	-10586.1	-10000.5	-8839.2	-8863.2	-8877.5						
AIC	-9014.3	-10593.1	-10019.5	-8851.2	-8875.2	-8889.5						
BIC	-9046.8	-10615.8	-10081.1	-8890.1	-8914.1	-8928.4						

Np : Number of parameters, log-lik : log-likelihood, AIC : Akaike Information Criteria, BIC : Bayesian Information Criteria, n : Sample size. Highest values are in bold.

(日) (同) (三) (三)

Forecasting performance

Table: Forecasting

	RMSFE				MAFE							
horizon(<i>h</i>)	1	5	25	100	1	5	25	100				
	S&P 500											
Real EGARCH	0.45	0.43	0.45	0.44	0.21	0.22	0.32	0.39				
MS-RV(2)	0.52	0.50	0.52	0.56	0.30	0.33	0.46	0.50				
MS-RV(4)	0.63	0.77	0.91	1.67	0.26	0.30	0.48	0.97				
MDSV(3, 10)	0.45	0.42	0.41	0.37	0.21	0.21	0.27	0.32				
MDSV(6, 3)	0.44	0.41	0.40	0.35	0.20	0.19	0.23	0.25				
MDSV(10, 2)	0.43	0.41	0.39	0.35	0.19	0.19	0.23	0.25				
NASDAQ 100												
Real EGARCH	0.56	0.51	0.50	0.51	0.27	0.28	0.36	0.45				
MS-RV(2)	0.86	5.44	4.09	5.20	0.55	0.87	1.07	1.13				
MS-RV(4)	0.69	0.70	0.84	0.74	0.34	0.36	0.46	0.59				
MDSV(3, 10)	0.55	0.49	0.44	0.41	0.25	0.25	0.30	0.33				
MDSV(6, 3)	0.55	0.49	0.44	0.39	0.25	0.25	0.30	0.31				
MDSV(10, 2)	0.55	0.49	0.44	0.39	0.24	0.25	0.28	0.29				

Conclusion

- Expand regime switching model by adding a more general model (generalization of MSM and other related models).
- MDSV take into account more stylized effect like leverage effect.
- MDSV allow to capture simultaneously low, intermediate and high frequencies dynamics.
- MDSV has a large state space and is parsimonious.
- MDSV has the ability to generate a high degree of volatility persistence.
- MDSV has a semi-Markov property on the distinct values of the state space.
- MDSV can be interpreted as a multi-component stochastic volatility model.
- MDSV can be integrate into a joint model (log-returns and realized variance) framework.
- We provide a package available on GitHub : https://github.com/Abdoulhaki/MDSV

・ 同 ト ・ ヨ ト ・ ヨ ト

- Laurent E Calvet and Adlai J Fisher. How to forecast long-run volatility: regime switching and the estimation of multifractal processes. *Journal of Financial Econometrics*, 2(1):49–83, 2004.
- Peter Reinhard Hansen and Zhuo Huang. Exponential garch modeling with realized measures of volatility. *Journal of Business & Economic Statistics*, 34(2):269–287, 2016.
- Jia Liu and John M Maheu. Improving markov switching models using realized variance. *Journal of Applied Econometrics*, 33(3): 297–318, 2018.

.