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Introduction Model Results

Introduction

Modelling financial data is essentially done through the study
of the log-return.

Regime switching processes become a powerful tool to model,
forecast and interpret financial data.

These models try to mimic some specifics characteristics
(called stylized facts) presented by log-returns.

The MSM (Calvet and Fisher (2004)) has proved to be a
strong competitor of GARCH class of models for modelling
volatility of returns.
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Motivation

MSM model the volatility of log-return by a high-dimensional
Markov chain obtained by the product of lower-dimensional
Markov chains (with 2 states).

MSM is parsimonious.

Nice interpretation of MSM : Financial volatility is impacted
by the arrival of news in the market whose impact persist for
varying periods of time

MSM allow to capture three types of features view in the
literature as distinct : low-frequency variations,
intermediate-frequency dynamics and high-frequency switches.
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Motivation

MSM does not help to reproduce some stylized facts such as
leverage effect.

MSM is based on the product of 2-states Markov chains.

Several recent studies (Hansen and Huang (2016); Liu and
Maheu (2018), etc.) showed that instead of modeling
uniquely log-returns, adding realized measures helps to
improve the information about the current level of volatility.
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What do we do?

We propose a new process (Multifractal Discrete Stochastic
Volatility, MDSV) that :

generalize MSM and other related models ,

slow the decay of the auto-correlation function at finite lags
(a stylized fact) ,

take into account leverage effect ,

jointly model financial log-returns and realized volatilities ,

allow to capture low-frequency variations,
intermediate-frequency dynamics and high-frequency switches
such as MSM ,

can be interpreted as a multi-component stochastic volatility
model .
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MDSV : Model presentation

Model :{
rt =

√
Vt εt ,

logRVt = ξ + ϕ log(Vt) + δ1εt + δ2(ε2
t − 1) + γεt ,

where ξ ∈ R, ϕ ∈ R, δ1 ∈ R, δ2 ∈ R, and γ ∈ (0,∞) are
parameters, and εt and εt are mutually and serially
independent innovation processes with mean 0 and variance 1.

Volatility process Vt is express as the product of two
components :

A persistent component Mt ,

A component Lt capturing leverage effect .

Vt = Mt Lt .
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MDSV : Model presentation

Persistent component :

The component {Mt}, MDSV(N, K ), is constructed as the
product of N independent Markov chains of dimension K :

Mt =
σ2

m

N∏
i=1

M
(i)
t ,

with M
(i)
t Markov chains with state space ν(i), stationary

distribution π(i) and the transition matrix P(i) defined by

P(i) = φi IK + (1− φi )1Kπ
(i) ,

where φi ∈ (0, 1) , and φi = ab
i−1
, ∀ i = 1, 2, . . . ,N .
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MDSV : Model presentation

Parsimony is reach by setting some restrictions. After all, the
component {Mt} depends on five parameters (independent of N):

σ2 ∈ (0,∞) , ν0 ∈ (0, 1) , a ∈ (0, 1) , b ∈ (1,∞) , ω ∈ (0, 1) .

Remark: Although the state space is of dimension KN , it contains
N(K − 1) + 1 distinct values.

Leverage component :

Lt =

NL∏
i=1

L
(i)
t avec L

(i)
t = 1 + li

|rt−i |√
Lt−i

1{rt−i<0} ,

where
li = θi−1

l l1 and l1 > 0 , θl ∈ [0, 1] .
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Some remarks

Theorem (Properties of MDSV) :

For k ≥ 1, we have

Cov [Mt+k ,Mt ] = σ4
(∏N

i=1

(
1 +

(
AK−1 − 1

)
φki
)
− 1
)
,

where A is a constant greater than 1 .

Pk −Π = O
(
kK−2ak

)
.

The distribution of the time that the chain {Mt} spends in
one of the (non-extremal) N(K − 1) + 1 distinct values of the
state space is not geometric (semi-Makov property).

Remark 1 :

MDSV generalize MSM and like models.

MDSV can be interpreted as a multi-component stochastic
volatility model.
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Performance measurement tools

Fitting (in-sample) :

AIC = L − k ,

BIC = L − k

2
log(n) ,

Forecasting (out-of-sample) :

RMSFE(h) =

√√√√√ 1

T − h + 1

T−h∑
t=0

(1

h

h∑
i=1

x̂t+i −
1

h

h∑
i=1

xt+i

)2
 ,

MAFE(h) =
1

T − h + 1

T−h∑
t=0

∣∣∣∣∣1h
h∑

i=1

x̂t+i −
1

h

h∑
i=1

xt+i

∣∣∣∣∣ ,
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Data

4 daily financial time series available on the Oxford-Man
Institute of Quantitative Finance’s web site :

S&P 500 (Standard & Poor’s 500)

NASDAQ 100 (National Association of Securities Dealers
Automated Quotation 100)

FTSE 100 (Financial Times Stock Exchange 100)

NIKKEI 225 (Nihon Keizai Shinbun 225)

Period : from January 1st , 2000 to December, 31st , 2019.

K.A.H. Maoude, M. Augustyniak, A. Dufays Multifractal Discrete Stochastic Volatility 11 / 14



Introduction Model Results

Fitting performance

Table: Comparison of fits

Benchmarks MDSV

Real MS-RV MS-RV (N, K) (N, K) (N, K)
EGARCH K = 2 K = 4 (3, 10) (6, 3) (10, 2)

Np 10 7 19 12 12 12
S&P 500 (n = 5016)

L -6786.1 -8324.1 -7402.2 -6673.8 -6687.9 -6701.0
AIC -6796.1 -8331.1 -7421.2 -6685.8 -6699.9 -6713.0
BIC -6828.7 -8354.0 -7483.2 -6724.9 -6739.0 -6752.2

NASDAQ 100 (n = 5012)
L -8661.3 -10624.0 -9802.2 -8546.9 -8568.3 -8590.3
AIC -8671.3 -10631.0 -9821.2 -8558.9 -8580.3 -8602.3
BIC -8703.9 -10653.8 -9883.2 -8598.0 -8619.4 -8641.5

FTSE 100 (n = 5042)
L -7809.9 -8918.2 -8302.4 -7761.4 -7804.8 -7789.4
AIC -7819.9 -8925.2 -8321.4 -7773.4 -7816.8 -7801.4
BIC -7852.5 -8948.0 -8383.4 -7812.6 -7855.9 -7840.6

NIKKEI 225 (n = 4865)
L -9004.3 -10586.1 -10000.5 -8839.2 -8863.2 -8877.5
AIC -9014.3 -10593.1 -10019.5 -8851.2 -8875.2 -8889.5
BIC -9046.8 -10615.8 -10081.1 -8890.1 -8914.1 -8928.4

Np : Number of parameters, log-lik : log-likelihood, AIC : Akaike Information Criteria, BIC : Bayesian Information
Criteria, n : Sample size. Highest values are in bold.
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Forecasting performance

Table: Forecasting

RMSFE MAFE
horizon(h) 1 5 25 100 1 5 25 100

S&P 500
Real EGARCH 0.45 0.43 0.45 0.44 0.21 0.22 0.32 0.39
MS-RV(2) 0.52 0.50 0.52 0.56 0.30 0.33 0.46 0.50
MS-RV(4) 0.63 0.77 0.91 1.67 0.26 0.30 0.48 0.97
MDSV(3, 10) 0.45 0.42 0.41 0.37 0.21 0.21 0.27 0.32
MDSV(6, 3) 0.44 0.41 0.40 0.35 0.20 0.19 0.23 0.25
MDSV(10, 2) 0.43 0.41 0.39 0.35 0.19 0.19 0.23 0.25

NASDAQ 100
Real EGARCH 0.56 0.51 0.50 0.51 0.27 0.28 0.36 0.45
MS-RV(2) 0.86 5.44 4.09 5.20 0.55 0.87 1.07 1.13
MS-RV(4) 0.69 0.70 0.84 0.74 0.34 0.36 0.46 0.59
MDSV(3, 10) 0.55 0.49 0.44 0.41 0.25 0.25 0.30 0.33
MDSV(6, 3) 0.55 0.49 0.44 0.39 0.25 0.25 0.30 0.31
MDSV(10, 2) 0.55 0.49 0.44 0.39 0.24 0.25 0.28 0.29
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Conclusion

Expand regime switching model by adding a more general model (generalization
of MSM and other related models).

MDSV take into account more stylized effect like leverage effect.

MDSV allow to capture simultaneously low, intermediate and high frequencies
dynamics.

MDSV has a large state space and is parsimonious.

MDSV has the ability to generate a high degree of volatility persistence.

MDSV has a semi-Markov property on the distinct values of the state space.

MDSV can be interpreted as a multi-component stochastic volatility model.

MDSV can be integrate into a joint model (log-returns and realized variance)
framework.

We provide a package available on GitHub :
https://github.com/Abdoulhaki/MDSV
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